\qquad

C.U.SHAH UNIVERSITY Winter Examination-2018

Subject Name : Engineering Mathematics - III
Subject Code : 4TE03EMT2

Branch: B. Tech (All)

Time : 02:30 To 05:30
Marks : 70

Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.
a) One of the Dirichlet's condition is function $f(x)$ should be
(A) single valued
(B) multi valued
(C) real valued
(D) None of these
b) If $f(x)=x^{2}$ is represented by Fourier series in $(-\pi, \pi)$ then b_{n} equal to
(A) $\pi^{2} / 3$
(B) 0
(C) $2 \pi^{2} / 3$
(D) $\pi^{2} / 6$
c) In the Fourier series expansion of $f(x)=x^{3}$ in $(-1,1)$
(A) only sine terms are present (B) both sine and cosine terms are present
(C) only cosine terms are present
(D) constant term is present
d) Laplace transform of $e^{2 t+3}$ is
(A) $\frac{e^{3}}{s-2}(s>2)$
(B) $\frac{e^{2}}{s-3}(s>3)$
(C) $\frac{1}{s-\log 2}$
(D) $\frac{1}{s-2}$
e) Laplace transform of $\frac{\sin t}{t}$ is
(A) $\cot ^{-1} \frac{1}{s}$
(B) $\tan ^{-1} s$
(C) $\tan ^{-1} \frac{1}{s}$
(D) $\sin ^{-1} s$
f) Inverse Laplace transform of $\frac{12}{s^{2}-9}$ is
(A) $3 \sinh 4 t$
(B) $4 \sinh 3 t$
(C) $4 \cosh 3 t$
(D) $3 \cosh 4 t$
g) $\frac{1}{D-a} X$, (Where $X=k$ is constant) equal to
(A) $-\frac{k}{a}$
(B) $\frac{k}{a}$
(C) $k a$
(D) $-k a$
h) The C. F. of the differential equation $\left(D^{2}-3 D+2\right) y=e^{2 x}$ is
(A) $c_{1} e^{x}+c_{2} e^{2 x}$
(B) $c_{1} e^{-x}+c_{2} e^{-2 x}$
(C) $c_{1} e^{-x}+c_{2} e^{2 x}$
(D) $c_{1} e^{x}+c_{2} e^{-2 x}$
i) The P. I of $\left(D^{2}+6 D+5\right) y=4 e^{-x}$ is
(A) $4 x e^{-x}$
(B) $4 x e^{x}$
(C) $x e^{x}$
(D) $x e^{-x}$
j) Eliminating arbitrary function from $z=f\left(x^{2}+y^{2}\right)$, the partial differential equation formed is
(A) $x q=y p$
(B) $x p=y q$
(C) $z=p q$
(D) None of these
k) The general solution of the equation $x p+y q=z$ is
(A) $F\left(\frac{x}{y}, \frac{y}{z}\right)=0$
(B) $F(x y, x+y)=0$
(C) $F\left(\frac{y}{x}, \frac{z}{y}\right)=0$
(D) None of these
I) The solution of $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=0$ is
(A) $z=f_{1}(y+x)+f_{1}(y-x)$
(B) $z=f_{1}(y+x)+f_{2}(y-x)$
(C) $z=f_{2}(y+x)+f_{2}(y-x)$
(D) $z=f\left(x^{2}-y^{2}\right)$
m) The order of convergence in Bisection method is
(A) linear
(B) quadratic
(C) zero
(D) None of these
n) Iterative formula for finding the square root of N by Newton-Raphson method is
(A) $x_{i+1}=\frac{1}{2}\left(x_{i}-\frac{N}{x_{i}}\right)(i=0,1,2, \ldots .$.
(B) $x_{i+!}=\frac{1}{2}\left(x_{i}+\frac{N}{x_{i}}\right)(i=0,1,2, \ldots .$.
(C) $x_{i+1}=x_{i}\left(2-N x_{i}\right)(i=0,1,2, \ldots .$.
(D) None of these

Attempt any four questions from Q-2 to Q-8

Q-4

Attempt all questions

a) Using Newton-Raphson method, find the root of $f(x)=\sin x+\cos x$ correct to three decimal places.
b) One real root of the equation $x^{3}-4 x-9=0$ lies between 2.625 and 2.75. Find the root using Bisection method.
c) Evaluate: $L\left(\frac{e^{-a t}-e^{-b t}}{t}\right)$

Attempt all questions

a) Show that $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}$ in the interval $-\pi \leq x \leq \pi$. Hence deduce that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots . .=\frac{\pi^{2}}{12}$.
b) Obtain Fourier series for the function $f(x)= \begin{cases}\pi x, & 0 \leq x \leq 1 \\ \pi(2-x), & 1 \leq x \leq 2\end{cases}$
c) One real root of the equation $x^{3}-4 x+1=0$ lies between 1 and 2 . Find the root correct to three significant digits using Secant method.
Attempt all questions
a) Using Laplace transform method solve:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=e^{t}, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

b) Evaluate: $L^{-1}\left(\frac{s}{s^{4}+s^{2}+1}\right)$
c) Solve: $p z-q z=z^{2}+(x+y)^{2}$
a) Using the method of variation of parameters, Solve: $y^{\prime \prime}+a^{2} y=\sec a x$
b) Solve: $(x+1)^{2} \frac{d^{2} y}{d x^{2}}+(x+1) \frac{d y}{d x}+y=2 \cos [\log (1+x)]$
c) Solve: $\frac{\partial^{2} z}{\partial x^{2}}=a^{2} z$ given that when $x=0, \frac{\partial z}{\partial x}=a \sin y$ and $\frac{\partial z}{\partial y}=0$.

Q-8
Attempt all questions
a) Using convolution theorem evaluate: $L^{-1}\left(\frac{s}{\left(s^{2}+4\right)^{2}}\right)$
b) Solve: $\frac{d^{3} y}{d x^{3}}+y=3+e^{-x}+5 e^{2 x}$
c) Solve: $\frac{\partial^{2} z}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial y^{2}}=\cos 2 x \cos 2 y$

Attempt all questions

a) Solve: $D^{2}\left(D^{2}+4\right) y=48 x^{2}$
b) Obtain a half - range sine series to represent $f(x)=l x-x^{2}$ in the range $(0, l)$.
c) Evaluate: $L\left(t e^{2 t} \cos 3 t\right)$
a) Determine the Fourier series up to and including the second harmonic to represent the periodic function $y=f(x)$ defined by the table of values given below. $f(x)=f(x+2 \pi)$

x°	0	30	60	90	120	150	180	210	240	270	300	330
$f(x)$	0.5	0.8	1.4	2.0	1.9	1.4	1.2	1.4	1.1	0.5	0.3	0.4

b) Using the method of separation of variables, solve $\frac{\partial u}{\partial \mathrm{x}}=2 \frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\mathrm{u}$, given $\mathrm{u}(\mathrm{x}, 0)=6 e^{-3 \mathrm{x}}$

