Enrollment No:

Exam Seat No:

C.U.SHAH UNIVERSITY

Winter Examination-2018

Subject Name: Engineering Mathematics - III

Subject Code: 4TE03EMT2 Branch: B. Tech (All)

Semester: 3 Date: 27/11/2018 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) One of the Dirichlet's condition is function f(x) should be(A) single valued (B) multi valued (C) real valued (D) None of these
- **b)** If $f(x) = x^2$ is represented by Fourier series in $(-\pi, \pi)$ then b_n equal to
 - (A) $\pi^2/3$ (B) 0 (C) $2\pi^2/3$ (D) $\pi^2/6$
- c) In the Fourier series expansion of $f(x) = x^3 \text{ in } (-1, 1)$
 - (A) only sine terms are present (B) both sine and cosine terms are present
 - (C) only cosine terms are present (D) constant term is present
- **d)** Laplace transform of e^{2t+3} is

(A)
$$\frac{e^3}{s-2} (s > 2)$$
 (B) $\frac{e^2}{s-3} (s > 3)$ (C) $\frac{1}{s-\log 2}$ (D) $\frac{1}{s-2}$

- e) Laplace transform of $\frac{\sin t}{t}$ is
 - (A) $\cot^{-1} \frac{1}{s}$ (B) $\tan^{-1} s$ (C) $\tan^{-1} \frac{1}{s}$ (D) $\sin^{-1} s$
- f) Inverse Laplace transform of $\frac{12}{s^2-9}$ is
 - (A) $3\sinh 4t$ (B) $4\sinh 3t$ (C) $4\cosh 3t$ (D) $3\cosh 4t$
- g) $\frac{1}{D-a}X$, (Where X = k is constant) equal to
 - (A) $-\frac{k}{a}$ (B) $\frac{k}{a}$ (C) ka (D) -ka
- **h)** The C. F. of the differential equation $(D^2 3D + 2)y = e^{2x}$ is
 - (A) $c_1 e^x + c_2 e^{2x}$ (B) $c_1 e^{-x} + c_2 e^{-2x}$ (C) $c_1 e^{-x} + c_2 e^{2x}$ (D) $c_1 e^x + c_2 e^{-2x}$
- i) The P. I of $(D^2 + 6D + 5)y = 4e^{-x}$ is
 - (A) $4xe^{-x}$ (B) $4xe^{x}$ (C) xe^{x} (D) xe^{-x}

- **j**) Eliminating arbitrary function from $z = f(x^2 + y^2)$, the partial differential equation formed is
 - (A) xq = yp (B) xp = yq (C) z = pq (D) None of these
- **k**) The general solution of the equation xp + yq = z is

(A)
$$F\left(\frac{x}{y}, \frac{y}{z}\right) = 0$$
 (B) $F\left(xy, x+y\right) = 0$ (C) $F\left(\frac{y}{x}, \frac{z}{y}\right) = 0$

- (D) None of these
- 1) The solution of $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = 0$ is

(A)
$$z = f_1(y+x) + f_1(y-x)$$
 (B) $z = f_1(y+x) + f_2(y-x)$

(C)
$$z = f_2(y+x) + f_2(y-x)$$
 (D) $z = f(x^2 - y^2)$

- m) The order of convergence in Bisection method is
 - (A) linear (B) quadratic (C) zero (D) None of these
- n) Iterative formula for finding the square root of N by Newton-Raphson method is

(A)
$$x_{i+1} = \frac{1}{2} \left(x_i - \frac{N}{x_i} \right) \left(i = 0, 1, 2, \dots \right)$$
 (B) $x_{i+1} = \frac{1}{2} \left(x_i + \frac{N}{x_i} \right) \left(i = 0, 1, 2, \dots \right)$

(C)
$$x_{i+1} = x_i (2 - Nx_i)$$
 ($i = 0,1,2,....$) (D) None of these

Attempt any four questions from Q-2 to Q-8

- Q-2 Attempt all questions
 - a) Using Newton-Raphson method, find the root of $f(x) = \sin x + \cos x$ correct to three decimal places. (5)
 - b) One real root of the equation $x^3 4x 9 = 0$ lies between 2.625 and 2.75. Find the root using Bisection method. (5)
 - c) Evaluate: $L\left(\frac{e^{-at} e^{-bt}}{t}\right)$ (4)
- Q-3 Attempt all questions (14)
 - a) Show that $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ in the interval $-\pi \le x \le \pi$. Hence deduce (5)

that
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$$
.

- **b)** Obtain Fourier series for the function $f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi (2-x), & 1 \le x \le 2 \end{cases}$ (5)
- c) One real root of the equation $x^3 4x + 1 = 0$ lies between 1 and 2. Find the root correct to three significant digits using Secant method. (4)
- Q-4 Attempt all questions (14)
 - a) Using Laplace transform method solve: $y''+3y'+2y=e^t$, y(0)=1, y'(0)=0 (5)
 - **b**) Evaluate: $L^{-1}\left(\frac{s}{s^4+s^2+1}\right)$ (5)

(14)

	c)	Solve: $pz - qz = z^2 + (x + y)^2$	(4)							
Q-5		Attempt all questions	(14)							
	a)	Using convolution theorem evaluate: $L^{-1}\left(\frac{s}{\left(s^2+4\right)^2}\right)$	(5)							
	b)	Solve: $\frac{d^3y}{dx^3} + y = 3 + e^{-x} + 5e^{2x}$	(5)							
	c)	Solve: $\frac{\partial^2 z}{\partial x^2} - 4 \frac{\partial^2 z}{\partial y^2} = \cos 2x \cos 2y$	(4)							
Q-6		Attempt all questions								
	a)	Solve: $D^2(D^2+4)y = 48x^2$	(5)							
	b)	Obtain a half – range sine series to represent $f(x) = lx - x^2$ in the range $(0, l)$.	(5)							
	c)	Evaluate: $L(t e^{2t} \cos 3t)$	(4)							
Q-7		Attempt all questions	(14)							
	a)	Using the method of variation of parameters, Solve: $y'' + a^2y = \sec ax$	(5)							
	b)	Solve: $(x+1)^2 \frac{d^2 y}{dx^2} + (x+1) \frac{dy}{dx} + y = 2\cos[\log(1+x)]$	(5)							
	c)	Solve: $\frac{\partial^2 z}{\partial x^2} = a^2 z$ given that when $x = 0$, $\frac{\partial z}{\partial x} = a \sin y$ and $\frac{\partial z}{\partial y} = 0$.	(4)							
Q-8		Attempt all questions	(14)							
	a)	Determine the Fourier series up to and including the second harmonic to	(7)							
		represent the periodic function $y = f(x)$ defined by the table of values given								
		below. $f(x) = f(x+2\pi)$								

below. $f(x) = f(x + 2\pi)$													
x°	0	30	60	90	120	150	180	210	240	270	300	330	
f(x)	0.5	0.8	1.4	2.0	1.9	1.4	1.2	1.4	1.1	0.5	0.3	0.4	

b) Using the method of separation of variables, solve $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 2\frac{\partial \mathbf{u}}{\partial \mathbf{t}} + \mathbf{u}$, given $\mathbf{u}(\mathbf{x}, 0) = 6e^{-3\mathbf{x}}$

